Cdc42 regulates branching in angiogenic sprouting in vitro.
نویسندگان
چکیده
OBJECTIVES The morphogenetic events that occur during angiogenic sprouting involve several members of the Rho family of GTPases, including Cdc42. However, the precise roles of Cdc42 in angiogenic sprouting have been difficult to elucidate owing to the lack of models to study these events in vitro. Here, we aim to identify the roles of Cdc42 in branching morphogenesis in angiogenesis. METHODS Using a 3D biomimetic model of angiogenesis in vitro, where endothelial cells were seeded inside a cylindrical channel within collagen gel and sprouted from the channel in response to a defined biochemical gradient of angiogenic factors, we inhibited Cdc42 activity with a small molecule inhibitor ML141 and examined the effects of Cdc42 on the morphogenetic processes of angiogenic sprouting. RESULTS We find that partial inhibition of Cdc42 had minimal effects on directional migration of endothelial cells, but led to fewer branching events without affecting the length of these branches. We also observed that antagonizing Cdc42 reduced collective migration in favor of single cell migration. Additionally, Cdc42 also regulated the initiation of filopodial extensions in endothelial tip cells. CONCLUSIONS Our findings suggest that Cdc42 can affect multiple morphogenetic processes during angiogenic sprouting and ultimately impact the architecture of the vasculature.
منابع مشابه
NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells
Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodi...
متن کاملCdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish.
During angiogenesis in vivo, endothelial cells (ECs) at the tips of vascular sprouts actively extend filopodia that are filled with bundles of linear actin filaments. To date, signaling pathways involved in the formation of endothelial filopodia have been studied using in-vitro-cultured ECs that behave differently from those in vivo. Herein, we have delineated a signaling pathway that governs t...
متن کاملDev125260 3058..3070
The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance. In vivo deletion of Cdc42 in embryonic ECs (Cdc42) results in blocked lume...
متن کاملDetermination of Endothelial Stalk versus Tip Cell Potential during Angiogenesis by H2.0-like Homeobox-1
Tissue branching morphogenesis requires the hierarchical organization of sprouting cells into leading "tip" and trailing "stalk" cells [1, 2]. During new blood vessel branching (angiogenesis), endothelial tip cells (TCs) lead sprouting vessels, extend filopodia, and migrate in response to gradients of the secreted ligand, vascular endothelial growth factor (Vegf) [3]. In contrast, adjacent stal...
متن کاملThe Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.
Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microcirculation
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2017